Showing posts with label Springer. Show all posts

John M. deMan
John W. Finley
W. Jeffrey Hurst
Chang Yong Lee

Food Science Text Series


www.e-books.vip
Purchase Now !
Just with Paypal



Book Details
 Price
 4.00
 Pages
 614 p
 File Size 
 22,274 KB
 File Type
 PDF format
 ISBN
 978-3-319-63605-4
 978-3-319-63607-8 (eBook) 
 Copyright©   
 Springer International Publishing AG 1999, 2018

About the Editors
John M. deMan (1926–2010) was a University Professor Emeritus in the
Department of Food Science at the University of Guelph, Ontario, Canada.
He was the Chairman of the Department and Past President of the Canadian
Institute of Food Science and Technology. He published over 250 papers and
book chapters on multiple aspects of food science and technology. He
received many professional awards, including the Dairy Research Award of
the American Dairy Science Association, the Institute Award of the Canadian
Institute of Food Science and Technology, the Alton E. Bailey Award of the
American Oil Chemist Society, the Stephen S. Chang Award of the Institute
of Food Technologists, and the Kaufmann Memorial Award of the International
Society of Fat Research. He was a Fellow of the Institute of Food Technologists,
the Canadian Institute of Food Science and Technology, and the Malaysian
Oil Science and Technology Association.
John W. Finley received a B.S. in Chemistry from LeMoyne College and a
Ph.D. from Cornell University. Dr. Finley retired from Louisiana State
University where he was head of the Food Science program from 2007 to
2014. His laboratory studied low calorie ingredients, anti-inflammatory compounds
in the diet, modified nutritional lipids, and edible fiber. Previously he
headed Fundamental Science at Nabisco, was a Fellow at Kraft Food, served
as chief technology officer of A.M. Todd Co. and the leader of the Food
Science program at Monsanto, and Research Scientist with the USDA
Regional Research Center.

Dr. Finley is a Fellow of the American Chemical Society, Fellow of
Agricultural and Food Division of the American Chemical Society, Fellow of
the Royal Society of Chemistry, Fellow of the Institute of Food Technologists,
and Certified Food Technologist by Fellow Institute of Food Technologists. He
was recognized as an Outstanding Alumnus of Michigan State University.
Other awards include Harris Distinguished lecturer at the Ohio State University
and a Leadership Award at Nabisco, and his memberships include Sigma Xi at
Michigan State University and Phi Kappa Phi at Cornell University.
Dr. Finley has edited 8 books, holds 70 patents, and 135 publications.
W. Jeffrey Hurst retired from the Hershey Company as Principal Scientist
after being with the corporation for over 39 years. His research focused on
monitoring new developments in measurement technology as they apply to
food systems and the review of new and emerging compounds important to
the food industry. He is a member of the American Chemical Society, the
Institute of Food Technologist. He is a member of the American Society of
Mass Spectrometry and Fellow of the American Institute of Chemists (FAIC).
Furthermore, he was named a Fellow of the AOAC, a Pioneer in Laboratory
Robotics, and is a Diplomate of the American Association Integrated
Medicine. Dr. Hurst was a member of the US Air Force and retired as a Major.
He also serves as a member of the External Advisory Board of the University
of Illinois at Chicago NIH bv Botanical Center. This book will be the tenth
one that he has edited or written. He was founding editor of Lab Robotics
Automation and Seminars in Food Analysis. He has numerous patents with
over 300 papers and presentations.

Chang Yong Lee received a B.S. in Chemistry from Chung-Ang University
in Seoul, Korea, and a Ph.D. from Utah State University. He has been working
as a faculty member at Cornell University since 1969. Professor Lee has
been teaching food chemistry for a number of years in the Department of
Food Science. His research interests have been on biochemical aspects of
plant foods. Recently his laboratory has been working on the bioactivity of
phytochemicals that is related to health benefits. He served as Chair of the
Department of Food Science and Technology and Co-director of Cornell
Institute of Food Science (2002–2008). Dr. Lee has held visiting professor
appointments at several institutions, including Korea Institute of Science and
Technology; Inter-American Institute of Agricultural Science at EMBRAPA,
Brazil; Institut National de la Recherche Agronomique, Avignon, France;
Beijing Vegetable Research Center, China; Ecole Nationale Superieure
des Industries Agricoles et Alimentaire, France; Graduate School of
Biotechnology, Korea University; and Kyung Hee University, Korea.
Professor Lee has authored more than 300 research articles. He was a
recipient of Platinum Award on his edited books on polyphenols from the
American Chemical Society’s Division of Agricultural and Food Chemistry.
Journal of Agricultural and Food Chemistry and the Institute for Scientific
Information (ISI) acknowledged Professor Lee as one of the Highly Cited
Researchers (HCR) in 2004. Thomson Reuters selected him as one of 112
scientists in the world in the field of Agricultural Science during 2002–2012
who published the greatest number of highly cited papers ranked in the top
1% by citations. Again in 2015, Thomson Reuters listed Lee as one of the
World’s Most Influential Scientific Minds in Agricultural Science. Professor
Lee was awarded USDA Secretary’s Honor Award for Excellence in Research
in 2001 and 2004, and Babcock-Hart Award from the International Life
Science Institute and the Institute of Food Technologists in 2003. He is
elected Fellow of the American Chemical Society’s Division of Agriculture
and Food Chemistry (1991), the Institute of Food Technologists (1996), the
Korean Academy of Science and Technology (1998), and International
Academy of Food Science and Technology (2006). He was appointed as
International Scholar (2011–2014) at Kyung Hee University in Korea and
recently (2014–present) he has been serving as Adjunct Distinguished
Professor at King Abdulaziz University, Saudi Arabia.

Table of Contents
1 Water  1
Yrjo H. Roos, John W. Finley, and John M. deMan
Water in Foods   1
Physical Properties of Water and Ice   1
Structure of the Water Molecule   4
Structure of Ice   6
Growth of Ice Crystals  7
Latent Heat of Fusion  7
Solidification Without Crystallization   8
Surface Tension of Water  10
Examples of Surface Tension   11
Colligative Properties of Aqueous Solutions  11
Freezing Point Depression  11
Boiling Point Elevation  12
Osmotic Pressure   12
Vapor Pressure Lowering   12
Ionic Interactions Are Attractions Between Oppositely
Charged Ions   13
Properties of Hydrogen Bonds   15
Hydrophobic Interactions   16
Water Activity and Sorption Phenomena  17
Types of Water  24
Phase Diagram   26
The Glass Transition  27
Water Activity and Reaction Rate  30
Water Activity and Food Spoilage  30
Water Activity and Packaging   33
Water Activity and Food Processing   34
References  35
2 Lipids   39
John W. Finley and John M. deMan
Shorthand Description of Fatty Acids and Glycerides  40
Fatty Acids  43
Lipid Nomenclature  43
Cis and trans Fatty Acids  44
Triglycerides  48
Component Glycerides  53
Waxes   58
Phospholipids  60
Unsaponifiables   63
Terpenes   63
Steroids  63
Phytosterols  66
Lipid Reactions   68
Fatty Acid Salts   68
Hydrolysis  68
Interesterification   68
Hydrogenation  72
Lipid Oxidation  78
Initiation   79
Propagation  79
Termination  79
Photooxidation   88
Heated Fats: Frying   90
Flavor Reversion  93
Physical Properties   95
Fractionation  105
Emulsions and Emulsifiers  106
Fat Replacers  110
References  113
3 Amino Acids and Proteins  117
Michael Appell, W. Jeffrey Hurst, John W. Finley,
and John M. deMan
Introduction   117
Amino Acids  117
Peptides and Proteins  118
Protein Classification  120
Simple Proteins  120
Conjugated Proteins  123
Derived Proteins   123
Protein Structure    123
Denaturation  125
Non-enzymic Browning   127
Chemical Changes  136
Functional Properties   139
Surface Activity of Proteins   140
Gel Formation   142
Animal Proteins   142
Milk Proteins  142
Meat Proteins   147
Meromysin  147
Collagen  149
Fish Proteins   152
Egg Proteins  153
Plant Proteins   154
Wheat Proteins   154
Maize Proteins   156
Rice Proteins  157
Soybean Proteins   158
Gluten Sensitivity   161
Test Methods   161
References   162
4 Carbohydrates  165
Gillian Eggleston, John W. Finley, and John M. deMan
Introduction   165
Monosaccharides   166
Related Compounds to Monosaccharides   171
Amino Sugars   171
Glycosides  172
Sugar Alcohols   172
Oligosaccharides   175
Disaccharides   175
Chemical Reactions of Sugars   179
Compounds Related to Sugars  191
Polysaccharides   191
Starch  192
Starch Degrading Enzymes  200
High Fructose Corn Syrup (HFCS)   201
Starch Hydrolyzates: Corn Sweeteners   202
Modified Starches   202
Glycogen   207
Cellulose   209
Pentosans/Hemicelluloses  210
Lignin  211
Cyclodextrins  212
Polydextrose   214
Pectins   215
Gums    216
Dietary Fiber  222
References   226
5 Minerals   231
John W. Finley and John M. deMan
Introduction  231
Interactions with Other Food Components   236
Major Minerals   237
Sodium   237
Potassium  237
Magnesium  
Calcium   238
Phosphates  238
Minerals in Milk   239
Minerals in Meat  241
Minerals in Plant Products  242
Chloride  243
Trace Elements  244
Iron   244
Cobalt   245
Copper   245
Zinc  245
Manganese  245
Molybdenum   246
Selenium   246
Fluorine  246
Iodine   246
Chromium  246
Additional Information on Trace Elements   247
Metal Uptake in Canned Foods  247
References  250
6 Color and Food Colorants  253
John W. Finley, John M. deMan, and Chang Yong Lee
Introduction   253
CIE System   253
Munsell System   258
Hunter System  260
Lovibond System   261
Gloss   262
Food Colorants    263
Tetrapyrrole Pigments  266
Myoglobins   266
Chlorophylls  268
Isoprenoid Derivative Pigments  270
Carotenoids   270
Benzopyran Derivative Pigments  276
Anthocyanins and Flavonoids  276
Other Pigments  281
Betalains  281
References   283
7 Flavor  285
Han-Seok Seo, John W. Finley, and John M. deMan
Taste Sensations  290
Chemical Structure and Taste   290
Sweet Taste   293
Sour Taste   294
Salty Taste   295
Bitter Taste  298
Other Aspects of Taste  301
Taste Inhibition and Modification   303
Flavor Enhancement—Umami   304
Odor   306
Odor and Molecular Structure  310
Description of Food and Beverage Flavors   314
Astringency   316
Flavor and Off-Flavor  317
Flavor of Some Foods  319
Meat   320
Fish  320
Milk  321
Cheese   321
Fruits  322
Vegetables  322
Tea   322
Coffee  323
Alcoholic Beverages  324
References  325
8 Texture   329
Harry Levine and John W. Finley
Introduction   329
Fluids  330
Texture of Solids   333
Texture Profile   334
Measurement of Texture  335
Force and Stress   336
Deformation and Strain   336
Principles of Measurement   337
Different Types of Bodies  337
The Elastic Body   337
The Retarded Elastic Body  338 
The Viscoelastic Body   338
The Plastic Body  339
The Thixotropic Body   341
Dynamic Behavior   341
Rheology Applications in Foods   342
Textural Properties of some Foods   348
Meat Texture  348
Wheat Flour Dough   349
Fats  350
Fruits and Vegetables   353
Starch   353
Microstructure  355
Water Activity and Texture   359
References   361
9 Vitamins   365
John W. Finley and John M. deMan
Introduction   365
Fat-Soluble Vitamins  367
Vitamin A (Retinol)  367
Vitamin D  372
Tocopherols (Vitamin E)  372
Vitamin K  378
Water-Soluble Vitamins   378
Vitamin C (L-Ascorbic Acid)   378
Vitamin B1 (Thiamin)  382
Vitamin B2 (Riboflavin)  383
Vitamin B6 (Pyridoxine)  385
Niacin   386
Vitamin B12 (Cyanocobalamine)   388
Folic Acid (Folacin)   389
Pantothenic Acid  391
Biotin   391
Vitamins as Food Ingredients  392
References  394
10 Enzymes   397
John M. deMan and Chang Yong Lee
Introduction   397
Nature and Kinetics of Enzymes   400
Nature of Enzymes  400
Kinetics of Enzymes  400
Specificity  404
Classification  405
Enzyme Production  405
Hydrolases  405
Esterases   405
Amylases   411
Pectic Enzymes   413
Proteases   415
Protein Hydrolysates  419
Oxidoreductases   421
Phenolases  421
Glucose Oxidase (β-d-Glucose: Oxygen Oxidoreductase)  423
Catalase (Hydrogen Peroxide: Hydrogen Peroxide
Oxidoreductase)   423
Peroxidase (Donor: Hydrogen Peroxide Oxidoreductase) 424
Lipoxygenase (Linoleate: Oxygen Oxidoreductase)  426
Xanthine Oxidase (Xanthine: Oxygen Oxidoreductase)   427
Immobilized Enzymes   429
References   432
11 Fruits and Vegetables  435
Chang Yong Lee
Major and Minor Components   435
Water   435
Carbohydrates   436
Proteins and Nitrogenous Compounds   438
Lipids   438
Minor Composition   438
Organic Acids   438
Phenolic Compounds  441
Minerals   443
Pigments  444
Postharvest Deterioration   445
Cellular Components and Physiology of Fruits
and Vegetables   446
Respiration   447
Environmental Factors that Influence Deterioration  448
Effects of Processing on Fruits and Vegetables  448
Carbohydrate Reactions   449
Protein Reactions   449
Lipid Reactions   450
Color Change  450
Flavor Change  451
Texture Change   452
Nutrient Loss  452
Dehydration of Fruits and Vegetables   453
Canning of Fruits and Vegetables  454
Freezing of Fruits and Vegetables  454
Lactic Acid Fermentation  454
References   455
12 Herbs and Spices   457
Zhuohong Xie and John W. Finley
Black Pepper  463
Vanilla  464
Cardamom   468
Ginger  469
Turmeric  471
Cinnamon   473
Ginseng  477
Ginkgo  478
Food Fraud Risks   478
References   478
13 Beer and Wine   483
John W. Finley
Alcoholic Fermentation  484
Beer   486
Raw Materials  488
Hops   489
Yeast   493
Wine   495
Wine Grape Production   496
Wine Production  498
References   506
14 Genetically Modified Crops   511
W. Jeffrey Hurst and John W. Finley
Applications of Genetically Modified Crops  518
Testing  521
Regulation  522
Future Challenges   522
GMO Dictionary  523
Flour  525
References   526
15 Additives and Contaminants   527
W. Jeffrey Hurst, John W. Finley and John M. deMan
Introduction  527
Food Toxins   527
Food Additives  531
Benzoic Acid  533
Parabens   533
Sorbic Acid  536
Sulfites  536
Nitrates and Nitrites   538
Hydrogen Peroxide  539
Sodium Chloride   539
Bacteriocins  540
Antioxidants  540
Emulsifiers  542
Bread Improvers  543
Incidental Additives or Contaminants  549
Pesticides  549
Dioxin   551
Polychlorinated Biphenyls (PCBs)  552
Antibiotics  555
Trace Metals   556
Mercury  556
Lead and Tin  559
Cadmium  560
Arsenic   560
Polycyclic Aromatic Hydrocarbons (PAHs)  560
Caffeine  562
References  563
Appendix A: Moisture Analysis  567
Appendix B: Units and Conversion Factors  573
Appendix C: Greek Alphabet  575
Index  577

Bookscreen
www.e-books.vip

Library of Congress Control Number: 2017956195
1st edition: © AVI 1980
2nd edition: © AVI 1989

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Romeo T. Toledo
Rakesh K. Singh
Fanbin Kong


www.e-books.vip
Purchase Now !
Just with Paypal



Book Details
 Price
 3.00
 Pages
 463 p
 File Size 
 16,419 KB
 File Type
 PDF format
 ISBN
 978-3-319-90097-1
 978-3-319-90098-8 (eBook)
 Copyright©   
 Springer International Publishing AG,
 part of Springer Nature 2007, 2018 2nd edition 
 ©Aspen Publishers, Inc. 1999

Preface
Since the publication of the first edition in 1981, the second edition in 2001,
and the third edition in 2007, this textbook has been widely adopted for Food
Engineering courses worldwide. The authors express their gratitude to
colleagues who have adopted this textbook and to those who have made
constructive criticisms on the materials in the previous editions. This new
edition not only incorporates changes suggested by colleagues, but additional
materials have been added to include facilitated problem-solving using a
computer and new food processing and food product technologies, such
aseptic processing and emerging food processing technologies. New sections
have been added in most of the chapters reflecting the current state of the
technology. The expanded coverage may result in not enough time available
in a school term to cover all areas; therefore, instructors are advised to
carefully peruse the book and select the most appropriate sections to cover
in a school term. The advantage of the expanded coverage is the elimination of
the need for a supplementary textbook.

The success of this textbook has been attributed to the expansive coverage
of subject areas specified in the Institute of Food Technologists model curriculum
for food science majors in the USA and the use of examples utilizing
conditions encountered in actual food processing operations. This theme
continues in the fourth edition. In addition to the emphasis on problemsolving,
technological principles that form the basis for a process are
presented so that the process can be better understood and selection of
processing parameters to maximize product quality and safety can be made
more effective. The fourth edition incorporates most of what was in the third
edition with most of the material updated to include the use of computers in
problem-solving. Use of the spreadsheet and macros such as the determinant
for solving simultaneous linear equations, the solver function, and programming
in Visual BASIC are used throughout the book. The manual problemsolving
approach has not been abandoned in favor of the computer approach.

Thus, users can still apply the concepts to better understand a process rather
than just mechanically entering inputs into a preprogrammed algorithm.
Entirely new sections include enthalpy change calculations in freezing
based on the freezing point depression, evaporative cooling, interpretation
of pump performance curves, determination of shape factors in heat exchange
by radiation, unsteady-state heat transfer, kinetic data for thermal degradation
of foods during thermal processing, pasteurization parameters for shelf-stable
high-acid foods and long-life refrigerated low-acid foods, high-pressure
processing of fluid and packaged foods, concentration of juices, environmentally
friendly refrigerants, modified atmosphere packaging of produce, sorption
equations for water activity of solid foods, the osmotic pressure and water
activity relationships, vacuum dehydration, new membranes commercially
available for food processing and waste treatment, and supercritical fluid extraction.

This edition contains much new hard-to-find data needed to conduct food
process engineering calculations and will be very useful as a sourcebook of
data and calculation techniques for practicing food engineers.
Athens, GA, USA 
Romeo T. Toledo
Rakesh Singh
Fanbin Kong



Table of Contents
1 Units and Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Systems of Measurement . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The SI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.1 Units in SI and Their Symbols . . . . . . . . . . . . . 2
1.3.2 Prefixes Recommended for Use in SI . . . . . . . . 2
1.4 Conversion of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.1 Precision, Rounding-Off Rule,
and Significant Digits . . . . . . . . . . . . . . . . . . . 3
1.5 The Dimensional Equation . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Conversion of Units Using the Dimensional Equation . . . 4
1.7 The Dimensional Constant (Gc) . . . . . . . . . . . . . . . . . . . 5
1.8 Determination of Appropriate SI Units . . . . . . . . . . . . . . 6
1.9 Dimensional Consistency of Equations . . . . . . . . . . . . . . 7
1.10 Conversion of Dimensional Equations . . . . . . . . . . . . . . . 7
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Material Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Law of Conservation of Mass . . . . . . . . . . . . . . 11
2.1.2 Process Flow Diagrams . . . . . . . . . . . . . . . . . . 11
2.1.3 System Boundaries . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Total Mass Balance . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Component Mass Balance . . . . . . . . . . . . . . . . 14
2.1.6 Basis and “Tie Material” . . . . . . . . . . . . . . . . . 16
2.2 Material Balance Problems Involved in Dilution,
Concentration, and Dehydration . . . . . . . . . . . . . . . . . . . 16
2.2.1 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Volume Changes on Mixing . . . . . . . . . . . . . . 17
2.2.3 Continuous Versus Batch . . . . . . . . . . . . . . . . . 18
2.2.4 Recycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 Unsteady State . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Blending of Food Ingredients . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Total Mass and Component Balances . . . . . . . . 22
2.3.2 Use of Specified Constraints in Equations . . . . . 25
2.4 Multistage Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 Gases and Vapors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Equations of State for Ideal and Real Gases . . . . . . . . . . . 41
3.1.1 The Kinetic Theory of Gases . . . . . . . . . . . . . . 41
3.1.2 Absolute Temperature and Pressure . . . . . . . . . 42
3.1.3 Quantity of Gases . . . . . . . . . . . . . . . . . . . . . . 43
3.1.4 The Ideal Gas Equation . . . . . . . . . . . . . . . . . . 44
3.1.5 Van Der Waals Equation of State . . . . . . . . . . . 45
3.1.6 Critical Conditions for Gases . . . . . . . . . . . . . . 47
3.1.7 Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Thermodynamic Variables . . . . . . . . . . . . . . . . 49
3.2.2 The Relationship Between Cp and Cv
for Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 P-V-T Relationships for Ideal Gases
in Thermodynamic Processes . . . . . . . . . . . . . . 50
3.2.4 Changes in Thermodynamic Properties, Work,
and Heat Associated with Thermodynamic
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.5 Work and Enthalpy Change on Adiabatic
Expansion or Compression of an Ideal Gas . . . . 51
3.2.6 Work and Enthalpy Change on Isothermal
Expansion or Compression of an Ideal Gas . . . . 52
3.3 Vapor-Liquid Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 The Clausius-Clapeyron Equation . . . . . . . . . . . 53
3.3.2 Liquid Condensation from Gas Mixtures . . . . . . 53
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4 Energy Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Energy Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1 Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Heat Content, Enthalpy . . . . . . . . . . . . . . . . . . 58
4.2.3 Specific Heat of Solids and Liquids . . . . . . . . . 58
4.3 Enthalpy Changes in Foods During Freezing . . . . . . . . . . 63
4.3.1 Correlation Equations Based on Freezing
Points of Food Products Unmodified
from the Natural State . . . . . . . . . . . . . . . . . . . 63
4.3.2 Enthalpy Changes During the Freezing
of Foods Calculated from Molality of Liquid
Water Fraction of the Food . . . . . . . . . . . . . . . 64
4.3.3 Freezing Point Depression by Solutes . . . . . . . . 64
4.3.4 Amount of Liquid Water and Ice at Temperatures
Below Freezing . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.5 Sensible Heat of Water and Ice
at Temperatures Below the Freezing Point . . . . 65
4.3.6 Total Enthalpy Change . . . . . . . . . . . . . . . . . . 65
4.3.7 Specific Heats of Gases and Vapors . . . . . . . . . 66
4.4 Properties of Saturated and Superheated Steam . . . . . . . . 68
4.4.1 The Steam Tables . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Properties of Steam Having Less Than 100%
Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Heat Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5 Flow of Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1 The Concept of Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.1 Viscometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Effect of Temperature on Rheological
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.3 Back Extrusion . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.4 Determination of Rheological Properties
of Fluids Using Rotational Viscometers . . . . . . 99
5.3 Continuous Viscosity Monitoring and Control . . . . . . . . . 104
5.3.1 Capillary Viscometer . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Rotational Viscometer . . . . . . . . . . . . . . . . . . . 105
5.3.3 Viscosity-Sensitive Rotameter . . . . . . . . . . . . . 106
5.4 Flow of Falling Films . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.1 Films of Constant Thickness . . . . . . . . . . . . . . 106
5.4.2 Time-Dependent Film Thickness . . . . . . . . . . . 108
5.4.3 Processes Dependent on Fluid Film
Thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5 Transportation of Fluids . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5.1 Momentum Balance . . . . . . . . . . . . . . . . . . . . 111
5.5.2 The Continuity Principle . . . . . . . . . . . . . . . . . 112
5.6 Fluid Flow Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6.1 The Reynolds Number . . . . . . . . . . . . . . . . . . . 113
5.6.2 Pipes and Tubes . . . . . . . . . . . . . . . . . . . . . . . 114
5.6.3 Frictional Resistance to Flow of Newtonian
Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6.4 Frictional Resistance to Flow of Non-Newtonian
Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6.5 Frictional Resistance Offered by Pipe Fittings
to Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.7 Mechanical Energy Balance: The Bernoulli Equation . . . . 120
5.8 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.8.1 Types of Pumps and Their Characteristics . . . . . 124
5.8.2 Factors to Be Considered in Pump Selection . . . 124
5.8.3 Performance Curves of Pumps . . . . . . . . . . . . . 125
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.1 Mechanisms of Heat Transfer . . . . . . . . . . . . . . . . . . . . . 135
6.1.1 Heat Transfer by Conduction . . . . . . . . . . . . . . 135
6.1.2 Fourier’s First Law of Heat Transfer . . . . . . . . . 135
6.1.3 Estimation of Thermal Conductivity of Food
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1.4 Fourier’s Second Law of Heat Transfer . . . . . . . 138
6.1.5 Temperature Profile for Unidirectional Heat
Transfer Through a Slab . . . . . . . . . . . . . . . . . 139
6.1.6 Conduction Heat Transfer Through Walls
of a Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1.7 The Temperature Profile in the Walls
of a Cylinder in Steady-State Heat Transfer . . . . 141
6.1.8 Heat Transfer by Convection . . . . . . . . . . . . . . 142
6.1.9 Heat Transfer by Radiation . . . . . . . . . . . . . . . 143
6.1.10 Microwave and Dielectric Heating . . . . . . . . . . 149
6.2 Temperature Measuring Devices . . . . . . . . . . . . . . . . . . . 152
6.2.1 Liquid-in-Glass Thermometers . . . . . . . . . . . . . 153
6.2.2 Fluid-Filled Thermometers . . . . . . . . . . . . . . . . 153
6.2.3 Bimetallic Strip Thermometers . . . . . . . . . . . . . 153
6.2.4 Resistance Temperature Devices (RTDs) . . . . . . 154
6.2.5 Thermocouples . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.6 Radiation Pyrometers . . . . . . . . . . . . . . . . . . . . 154
6.2.7 Accurate Temperature Measurements . . . . . . . . 155
6.3 Steady-State Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.1 The Concept of Resistance to Heat Transfer . . . 155
6.3.2 Combined Convection and Conduction:
The Overall Heat Transfer Coefficient . . . . . . . . 156
6.4 Heat Exchange Equipment . . . . . . . . . . . . . . . . . . . . . . . 158
6.4.1 Heat Transfer in Heat Exchangers . . . . . . . . . . . 160
6.4.2 The Logarithmic Mean Temperature
Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.5 Local Heat Transfer Coefficients . . . . . . . . . . . . . . . . . . . 162
6.5.1 Dimensionless Quantities . . . . . . . . . . . . . . . . . 162
6.5.2 Equations for Calculating Heat Transfer
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.6 Unsteady-State Heat Transfer . . . . . . . . . . . . . . . . . . . . . 169
6.6.1 Heating of Solids Having Infinite Thermal
Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.6.2 Solids with Finite Thermal Conductivity . . . . . . 170
6.6.3 The Semi-Infinite Slab with Constant
Surface Temperature . . . . . . . . . . . . . . . . . . . . 171
6.6.4 The Infinite Slab . . . . . . . . . . . . . . . . . . . . . . . 172
6.6.5 Temperature Distribution for a Brick-Shaped
Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.6.6 Use of Heisler and Gurney-Lurie Charts . . . . . . 174
6.7 Calculating Surface Heat Transfer Coefficients
from Experimental Heating Curves . . . . . . . . . . . . . . . . . 175
6.8 Freezing Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Suggested Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7 Kinetics of Chemical Reactions in Foods . . . . . . . . . . . . . . . . 183
7.1 Theory of Reaction Rates . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2 Types of Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2.1 Unimolecular Reactions . . . . . . . . . . . . . . . . . . 183
7.2.2 Bimolecular Reactions . . . . . . . . . . . . . . . . . . . 184
7.2.3 Reversible Reactions . . . . . . . . . . . . . . . . . . . . 184
7.3 Enzyme Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.4 Reaction Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.4.1 Zero-Order Reactions . . . . . . . . . . . . . . . . . . . 187
7.4.2 First-Order Reactions . . . . . . . . . . . . . . . . . . . . 187
7.4.3 Second-Order Reactions . . . . . . . . . . . . . . . . . 187
7.4.4 nth-Order Reactions . . . . . . . . . . . . . . . . . . . . . 188
7.5 Reactions Where Product Concentration Is Rate
Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6 The Reaction Rate Constant . . . . . . . . . . . . . . . . . . . . . . 189
7.7 Temperature Dependence of Reaction Rates . . . . . . . . . . 189
7.7.1 The Arrhenius Equation . . . . . . . . . . . . . . . . . . 189
7.7.2 The Q10 Value . . . . . . . . . . . . . . . . . . . . . . . . 190
7.7.3 The z Value . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.8 Determination of Reaction Kinetic Parameters . . . . . . . . . 191
7.9 Use of Chemical Reaction Kinetic Data for Thermal
Process Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8 Thermal Process Calculations . . . . . . . . . . . . . . . . . . . . . . . . 195
8.1 Processes and Systems for Stabilization of Foods for Shelf-
Stable Storage: Systems Requirements . . . . . . . . . . . . . . 195
8.1.1 In-Container Processing . . . . . . . . . . . . . . . . . . 195
8.1.2 Processing Products Packaged in Flexible Plastic
Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.1.3 Processing in Glass Containers . . . . . . . . . . . . . 199
8.1.4 Flame Sterilization Systems . . . . . . . . . . . . . . . 200
8.1.5 Continuous Flow Sterilization: Aseptic
or Cold Fill . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.1.6 Steam-Air Mixtures for Thermal Processing . . . 201
8.2 Microbiological Inactivation Rates at Constant Temperature 201
8.2.1 Rate of Microbial Inactivation . . . . . . . . . . . . . 201
8.2.2 Shape of Microbial Inactivation Curves . . . . . . 202
8.2.3 Sterilizing Value or Lethality of a Process . . . . . 204
8.2.4 Acceptable Sterilizing Value for Processes . . . . 205
8.2.5 Selection of Inoculation Levels in Inoculated
Packs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.2.6 Determination of D Values Using
the Partial Sterilization Technique . . . . . . . . . . 207
8.2.7 The Heat Resistance of Spoilage Microorganisms 207
8.2.8 F0 Values Used in Commercial Sterilization
of Canned Foods . . . . . . . . . . . . . . . . . . . . . . . 207
8.2.9 Surface Sterilization . . . . . . . . . . . . . . . . . . . . 207
8.3 Effect of Temperature on Thermal Inactivation of
Microorganisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.4 Inactivation of Microorganisms and Enzymes in
Continuously Flowing Fluids . . . . . . . . . . . . . . . . . . . . . 211
8.4.1 Time and Temperature Used in the Pasteurization
of Fluid Foods . . . . . . . . . . . . . . . . . . . . . . . . 211
8.4.2 Microbial Inactivation in Continuously
Flowing Fluids . . . . . . . . . . . . . . . . . . . . . . . . 213
8.4.3 Nutrient Degradation . . . . . . . . . . . . . . . . . . . . 216
8.4.4 High-Pressure Pasteurization . . . . . . . . . . . . . . 219
8.4.5 Sterilization of Fluids Containing Discreet
Particulates by Heat . . . . . . . . . . . . . . . . . . . . . 222
8.5 Sterilizing Value of Processes Expressed as F0 . . . . . . . . . 223
8.6 Thermal Process Calculations for Canned Foods . . . . . . . 223
8.6.1 The General Method . . . . . . . . . . . . . . . . . . . . 224
8.6.2 Heat Transfer Equations and Time-Temperature
Curves for Canned Foods . . . . . . . . . . . . . . . . . 225
8.6.3 Plotting Heat Penetration Data . . . . . . . . . . . . . 227
8.6.4 Formula Methods for Thermal Process Evaluation 231
8.6.5 Evaluation of Probability of Spoilage from a
Given Process . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.7 Broken Heating Curves . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.8 Quality Factor Degradation . . . . . . . . . . . . . . . . . . . . . . . 239
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
9 Aseptic Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.1 The System and Its Elements . . . . . . . . . . . . . . . . . . . . . 245
9.2 Characteristics of Specific Elements . . . . . . . . . . . . . . . . 245
9.2.1 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . 246
9.2.2 Heat Transfer/Cooling . . . . . . . . . . . . . . . . . . . 247
9.2.3 Hold Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.2.4 Deaerators . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
9.2.5 Aseptic Surge Tank . . . . . . . . . . . . . . . . . . . . . 252
9.3 Thermal Process for the Product . . . . . . . . . . . . . . . . . . . 252
9.3.1 Influence of Product Characteristics . . . . . . . . . 252
9.3.2 Thermal Process Calculations . . . . . . . . . . . . . . 253
9.4 Flow Characteristics of Product . . . . . . . . . . . . . . . . . . . 256
9.4.1 Residence Time Distribution (RTD) . . . . . . . . . 258
9.5 Heat Transfer to Product . . . . . . . . . . . . . . . . . . . . . . . . 269
9.6 Filling and Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
9.7 Monitors and Controls . . . . . . . . . . . . . . . . . . . . . . . . . . 272
9.8 Processing System Sterilization . . . . . . . . . . . . . . . . . . . . 273
9.8.1 Maintenance of Sterility . . . . . . . . . . . . . . . . . . 274
9.8.2 Process Confirmation . . . . . . . . . . . . . . . . . . . . 274
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
10 Refrigeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
10.1 Mechanical Refrigeration System . . . . . . . . . . . . . . . . . . 277
10.1.1 Principle of Operation: The Heat Pump . . . . . . . 277
10.1.2 Refrigerants . . . . . . . . . . . . . . . . . . . . . . . . . . 278
10.1.3 The Refrigeration Cycle . . . . . . . . . . . . . . . . . . 279
10.1.4 The Refrigeration Cycle as a Series of
Thermodynamic Processes . . . . . . . . . . . . . . . . 281
10.1.5 The Refrigeration Cycle on the Pressure/Enthalpy
Diagram for a Given Refrigerant . . . . . . . . . . . 281
10.1.6 The Condenser and Evaporator . . . . . . . . . . . . . 288
10.1.7 The Compressor . . . . . . . . . . . . . . . . . . . . . . . 290
10.2 Refrigeration Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
10.2.1 Heat Incursion Through Enclosures . . . . . . . . . 292
10.2.2 Heat Incursion Through Cracks
and Crevices . . . . . . . . . . . . . . . . . . . . . . . . . . 292
10.2.3 Heat Incursion Through Open Doors . . . . . . . . 293
10.2.4 Heat Generation . . . . . . . . . . . . . . . . . . . . . . . 293
10.2.5 The Unsteady-State Refrigeration Load . . . . . . . 295
10.3 Commodity Storage Requirements . . . . . . . . . . . . . . . . . 296
10.4 Controlled Atmosphere Storage . . . . . . . . . . . . . . . . . . . 296
10.4.1 Respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.4.2 CA Gas Composition . . . . . . . . . . . . . . . . . . . . 298
10.5 Modified Atmosphere Packaging . . . . . . . . . . . . . . . . . . . 301
10.5.1 Modified Atmosphere Packaging of Fruit,
Vegetables, Bakery Products, and Nuts . . . . . . . 301
10.5.2 MAP of Fresh Ready to Cook Meats . . . . . . . . 302
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
11 Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
11.1 Single-Effect Evaporators . . . . . . . . . . . . . . . . . . . . . . . . 307
11.1.1 The Vapor Chamber . . . . . . . . . . . . . . . . . . . . 307
11.1.2 The Condenser . . . . . . . . . . . . . . . . . . . . . . . . 309
11.1.3 Removal of Noncondensible Gases . . . . . . . . . . 310
11.1.4 The Heat Exchanger . . . . . . . . . . . . . . . . . . . . 312
11.2 Improving the Economy of Evaporators . . . . . . . . . . . . . . 314
11.2.1 Vapor Recompression . . . . . . . . . . . . . . . . . . . 314
11.2.2 Multiple-Effect Evaporators . . . . . . . . . . . . . . . 316
11.2.3 Entrainment . . . . . . . . . . . . . . . . . . . . . . . . . . 318
11.2.4 Essence Recovery . . . . . . . . . . . . . . . . . . . . . . 318
11.2.5 Temperature-Accelerated Short-Time Evaporator
(TASTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
12 Dehydration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
12.1 Water Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
12.1.1 Thermodynamic Basis for Water Activity . . . . . 321
12.1.2 Osmotic Pressure . . . . . . . . . . . . . . . . . . . . . . . 322
12.1.3 Water Activity at High Moisture Contents . . . . . 323
12.1.4 Water Activity at Low Moisture Contents . . . . . 327
12.2 Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
12.2.1 Mass Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 330
12.2.2 Mass Transfer from Surfaces
to Flowing Air . . . . . . . . . . . . . . . . . . . . . . . . 332
12.3 Psychrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
12.3.1 Carrying Capacity of Gases for Vapors . . . . . . . 334
12.3.2 The Psychrometric Chart . . . . . . . . . . . . . . . . . 335
12.3.3 Use of Psychrometric Chart to Follow
Changes in the Properties of Air-Water Mixtures
Through a Process . . . . . . . . . . . . . . . . . . . . . . 337
12.4 Simultaneous Heat and Mass Transfer in Dehydration . . . 338
12.5 The Stages of Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
12.6 Prediction of Drying Times from Drying Rate Data . . . . . 340
12.6.1 Materials with One Falling Rate Stage
Where the Rate of Drying Curve Goes
Through the Origin . . . . . . . . . . . . . . . . . . . . . 340
12.6.2 Materials with More than One Falling
Rate Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
12.6.3 The Constant Drying Rate . . . . . . . . . . . . . . . . 342
12.7 Spray Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
12.7.1 Drying Times in Spray Drying . . . . . . . . . . . . . 345
12.8 Freeze Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
12.8.1 Drying Times for Symmetrical Drying . . . . . . . 349
12.9 Vacuum Belt Drier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
13 Physical Separation Processes . . . . . . . . . . . . . . . . . . . . . . . . 355
13.1 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
13.1.1 Filtrate Flow Through Filter Cake . . . . . . . . . . 356
13.1.2 Constant Pressure Filtration . . . . . . . . . . . . . . . 358
13.1.3 Filtration Rate Model Equations for Prolonged
Filtration When Filter Cakes Exhibit
Time-Dependent Specific Resistance . . . . . . . . 360
13.1.4 Exponential Dependence of Rate on Filtrate
Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
13.1.5 Model Equation Based on Time-Dependent
Specific Cake Resistance . . . . . . . . . . . . . . . . . 362
13.1.6 Optimization of Filtration Cycles . . . . . . . . . . . 363
13.1.7 Pressure-Driven Membrane Separation Processes 365
13.1.8 Membrane System Configurations . . . . . . . . . . 367
13.1.9 Transmembrane Flux in Pressure-Driven
Membrane Separation Processes
(Polarization Concentration and Fouling) . . . . . 368
13.1.10 Solute Rejection . . . . . . . . . . . . . . . . . . . . . . . 371
13.1.11 Sterilizing Filtrations . . . . . . . . . . . . . . . . . . . . 371
13.1.12 Ultrafiltration . . . . . . . . . . . . . . . . . . . . . . . . . 373
13.1.13 Reverse Osmosis . . . . . . . . . . . . . . . . . . . . . . . 373
13.1.14 Temperature Dependence of Membrane
Permeation Rates . . . . . . . . . . . . . . . . . . . . . . . 377
13.1.15 Other Membrane Separation Processes . . . . . . . 377
13.2 Sieving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
13.2.1 Standard Sieve Sizes . . . . . . . . . . . . . . . . . . . . 378
13.3 Gravity Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
13.3.1 Force Balance on Particles Suspended
in a Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
13.3.2 Terminal Velocity . . . . . . . . . . . . . . . . . . . . . . 380
13.3.3 The Drag Coefficient . . . . . . . . . . . . . . . . . . . . 381
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
14 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
14.1 Types of Extraction Processes . . . . . . . . . . . . . . . . . . . . . 386
14.1.1 Single-Stage Batch Processing . . . . . . . . . . . . . 386
14.1.2 Multistage Cross-Flow Extraction . . . . . . . . . . . 386
14.1.3 Multistage Countercurrent Extraction . . . . . . . . 386
14.1.4 Continuous Countercurrent Extractors . . . . . . . . 387
14.2 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
14.2.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
14.2.2 Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
14.2.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
14.3 Solid-Liquid Extraction: Leaching . . . . . . . . . . . . . . . . . . 389
14.3.1 The Extraction Battery: Number
of Extraction Stages . . . . . . . . . . . . . . . . . . . . . 389
14.3.2 Determination of the Number of Extraction
Stages Using the Ponchon-Savarit Diagram . . . . 390
14.3.3 The Lever Rule in Plotting Position of a Mixture
of Two Streams in an X-Y Diagram . . . . . . . . . 390
14.3.4 Mathematical and Graphical Representation
of the Point J in the Ponchon-Savarit
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
14.3.5 Mathematical and Graphical Representation
of the Point P. . . . . . . . . . . . . . . . . . . . . . . . . 392
14.3.6 Equation of the Operating Line and
Representation on the X-Y Diagram . . . . . . . . . 393
14.3.7 Construction of the Ponchon-Savarit
Diagram for the Determination
of the Number of Ideal Extraction Stages . . . . . 393
14.4 Supercritical Fluid Extraction . . . . . . . . . . . . . . . . . . . . . 398
14.4.1 Extraction Principles . . . . . . . . . . . . . . . . . . . . 398
14.4.2 Critical Points of Supercritical Fluids
Used in Foods . . . . . . . . . . . . . . . . . . . . . . . . . 399
14.4.3 Critical Point of Mixtures . . . . . . . . . . . . . . . . . 399
14.4.4 Properties of Supercritical Fluids Relative
to Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
14.4.5 Supercritical Fluid Extraction Parameters . . . . . 399
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
15 Emerging Food Processing Technologies . . . . . . . . . . . . . . . . 403
15.1 Microwave and Radio Frequency Heating . . . . . . . . . . . . 403
15.1.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 403
15.1.2 Heat Generation by MW and RF in Food . . . . . 405
15.1.3 Penetration Depth of Microwave
and Radio-Frequency Waves in Food . . . . . . . . 407
15.1.4 Technical Design . . . . . . . . . . . . . . . . . . . . . . . 408
15.1.5 Research Status and Applications . . . . . . . . . . . 410
15.2 High-Pressure Processing . . . . . . . . . . . . . . . . . . . . . . . . 411
15.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 411
15.2.2 Technical Design . . . . . . . . . . . . . . . . . . . . . . . 412
15.2.3 Research Status and Applications . . . . . . . . . . . 415
15.3 Pulse Electric Field Processing . . . . . . . . . . . . . . . . . . . . 416
15.3.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 416
15.3.2 Technical Design . . . . . . . . . . . . . . . . . . . . . . . 418
15.3.3 Research Status and Applications . . . . . . . . . . . 420
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445


Bookscreen
www.e-books.vip

©Springer International Publishing AG, part of Springer Nature 2018
R. T. Toledo et al., Fundamentals of Food Process Engineering,
Loading...
DMCA.com Protection Status